Научный журнал
Международный журнал прикладных и фундаментальных исследований

ISSN 1996-3955
ИФ РИНЦ = 0,580

On evolution of stationary processes near the origins of excitation

Sergiyenko L.S. 1 Nesmeyanov A.A. 2
1 National research Irkutsk state technical university
2 East-siberian institute of Ministry of Internal Affairs of Russia
In three-dimensional Euclidean space we study elliptic system of four equations in quotient derivatives of the fourth order with four unknowns that parabolically degenerates on the coordinate axis. In certain classes of function smoothness an existence of the unique (with precision up to random constant) limited solution of the system that meet the fixed boundary terms in cylinder, symmetric to the line of degeneration, is proved. The proof is carried out through the reduction of the results of differentiation and integration of the system equations and dividing variables according to classic algorithm of Fourier. While calculating coefficients of the line that represent the solution of common linear differential equation of the second order with a special point in the centre of the research area that is a consequence of the studied system, special multinomials of so-called triangle form were built. The results can be used while modeling stationary processes in asymmetric solenoid speed field.
stationary processes
1. Nesmayanov A.A., Sigalov G.F. Diffraction of small-water waves on thin body under near-critical movement speed // Young scientists’ messenger. / Series: applied maths and mechanics. –SPb: Ed. SPB state technical university, 2002, №1. – Р. 72-77.
2. Sergiyenko L.S. On setting of correct objectives for degenerating models of stationary processes that take place in solenoid speed field // Non-classic equation of mathematic physics. – Novosibirsk: Ed. Institute of mathematics, 2002. – Р. 226-230.
3. Sergiyenko L.S. Mathematic modeling of physical-technical processes. – Irkutsk: Ed. Irkutsk state technical university, 2006. – P. 58-91, 169-173.
4. Sergiyenko L.S. On problem of Dirichlet for one class of degenerating on axis elliptic equations // Modern methods of function theory and adjoining problems: materials of Voronezh winter mathematic school / Voronezh state university, Moscow state university of M.V. Lomonosov, Mathematic institute of V.A. Steklovof Russian science academy: Voronezh: Ed. centre of Voronezh state university. – 2011. – P. 311-312
5. Sergiyenko L.S., Byenchayeva A.V. The first boundary problem for stationary equation of Schrodinger class // Irkuts state technical university Messenger /scientific magazine – Irkutsk: Ed. Irkutsk state technical university, 2011. – № 10. – P. 275-280.
6. Tichonov A.N., Samarskiy A.A. Equations of mathematic physics: textbook. –M.: Science, 1977. – P. 484-495, 518-527, 615-655.
7. Janushauskas A.I. Analytic theory of elliptic equations. – Novosibirsk: Science, 1978. – Р. 159-162.

Библиографическая ссылка

Sergiyenko L.S., Nesmeyanov A.A. On evolution of stationary processes near the origins of excitation // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 1-2. – С. 5-7;
URL: http://www.applied-research.ru/ru/article/view?id=5551 (дата обращения: 09.03.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074