Научный журнал
Международный журнал прикладных и фундаментальных исследований

ISSN 1996-3955
ИФ РИНЦ = 0,580

БИКВАДРАТИЧНЫЕ ПРЕОБРАЗОВАНИЯ И КОНСТРУИРОВАНИЕ ТУННЕЛЕЙ

Байдабеков А.К. 1 Кемельбекова Э.А. 1
1 Евразийский национальный университет им. Л.Н. Гумилева
В настоящее время существует множество способов разработки и создания туннелей в разных отраслях. Совершенствование таких методов построения поверхностей является подземной структурой, в которой она является актуальной задачей в горнодобывающей промышленности. Туннельная поверхность подземных сооружений конструируется двумя способами, такими как закрытый и горный. При закрытом способе работ туннели сооружают одновременно на нескольких участках, что сокращает сроки строительства. На всех участках с поверхности над осью туннеля закладывают ствол шахты и штольней соединяют его со строящимся туннелем. А при горном способе поверхность туннелей разрабатывают буровзрывным методом или механизированным инструментом, после этого немедленно выполняют временное крепление лба и контура выработки, а затем возводят обделку туннеля. В обоих способах необходимо разработать конструкцию поверхности туннелей. Таким образом, поверхность туннеля представляет собой сложную криволинейную поверхность, которая должна отвечать заданным требованиям, а конструкция поверхности туннеля требует значительных затрат времени. В статье представлен новый способ построения поверхности туннеля в соответствии с предопределенными условиями с использованием биквадратичного преобразования плоскости, что позволяет описать конструкцию каждой секции туннеля одним уравнением.
преобразования
биквадратичные преобразования
графическая модель
туннель
туннельный разрез
конструирование туннеля
туннельная поверхность
1. Сорочан Е.А., Трофименков Ю.Г. Основания, фундаменты и подземные сооружения. М.: Книга, 2013. 480 с.
2. Фугенфиров А.А. Проектирование транспортных тоннелей: учеб. пособие. Омск: СибАДИ, 2008. 262 с.
3. Селицкая Н.В., Сачкова А.В. Проектирование тоннеля, сооружаемого методом щитовой П79 проходки. Белгород: Изд-во БГТУ, 2013. 28 с.
4. Селицкая Н.В., Сачкова А.В., Духовный Г.С. Проектирование тоннеля, сооружаемого методом щитовой проходки. Белгород: БГТУ, 2013. 30 с.
5. Байдабеков А.К. Биквадратичные преобразования. Минск: БНТУ, 2012. 190 с.
6. Иванов Г.С. Конструирование технических поверхностей (математическое моделирование на основе нелинейных преобразований). М.: Машиностроение, 1987. 192 с.

Известно, что поверхности туннеля являются сложными криволинейными поверхностями, которые должны соответствовать наперед заданным требованиям. Конструирование туннельных поверхностей подземных сооружений осуществляется закрытым и горным способами [1]. Туннельные поверхности при закрытом способе сооружают одновременно на нескольких участках, это дает возможность сокращения сроков строительства [2]. На всех участках с поверхности над осью туннеля закладывают ствол шахты и штольней соединяют его со строящимся туннелем. При горном способе поверхность туннелей разрабатывают буровзрывным методом или механизированным инструментом, после этого немедленно выполняют временное крепление и контура выработки, а затем возводят обделку туннеля [3]. Данные способы требуют разработки конструкции поверхности туннелей. Вследствие чего конструирование поверхности туннеля представляет собой сложную криволинейную поверхность, которая должна отвечать заданным требованиям, а конструкция поверхности туннеля требует значительных затрат времени [4]. В работе предлагается новый способ построения поверхности туннеля в соответствии с предопределенными условиями с использованием биквадратичного преобразования плоскости, что позволяет описать конструкцию каждой секции туннеля одним уравнением [5]. Конструирование и строительство поверхности туннеля требует значительного времени и затрат, поэтому совершенствование методов конструирования поверхностей подземных сооружений является актуальной задачей в шахтостроении [6].

Цель исследования: в результате исследований получить новый метод конструирования поверхности туннеля по наперед заданным условиям с использованием биквадратичного преобразования плоскости, который позволит описать конструирование каждого сечения туннеля одним уравнением.

Материалы и методы исследования

Квадратичные преобразования плоскости исследованы достаточно и нашли применение в прикладной геометрии, а также в науке и технике. Однако исследованию и применению четыре – четырехзначных соответствий и биквадратичных преобразований плоскости исследованы мало.

Сущность предлагаемого метода моделирования биквадратичных преобразований плоскости, порождаемых бинарным отображением двух поверхностей второго порядка, заключается в следующем.

В евклидовом трехмерном пространстве E3 задаются две поверхности второго порядка bayd01.wmf и bayd02.wmf, уравнения которых имеют вид

bayd03.wmf (1)

bayd04.wmf (2)

где x1, x2, x3 – декартовые координаты;

bayd05.wmf – непрерывные многочлены второго порядка.

На плоскости П1 отметим точку А и через эту точку проведём вертикальный луч s, который пересекает заданные поверхности bayd06.wmf и bayd07.wmf соответственно в точках bayd08.wmf и bayd09.wmf, bayd10.wmf и bayd11.wmf. Поверхность второго порядка bayd12.wmf вращаем вокруг оси ординаты так, чтобы положительное направление оси аппликаты совпадало с положительным направлением оси абсциссы.

Другими словами, поверхность второго порядка bayd13.wmf подвергается пространственному преобразованию γ1 (вращению вокруг оси ординаты под углом 900), матрица которого задается уравнением

bayd14.wmf = bayd15.wmf bayd17.wmf. (3)

Получим новое положение поверхности второго порядка bayd18.wmf и точки bayd19.wmf, bayd20.wmf, которые соответствуют точкам bayd21.wmf и bayd22.wmf. Точки bayd23.wmf и bayd24.wmf проецируем вертикальными лучами на плоскость П1, получим точки A1 и A2. Вращаем вокруг оси абсциссы вторую поверхность второго порядка bayd25.wmf так, чтобы положительное направление оси аппликаты совпадало с положительным направлением оси ординаты.

Таким образом, поверхность bayd26.wmf подвергаем пространственному преобразованию γ2, заданному матричным уравнением

bayd27.wmf = bayd28.wmf bayd30.wmf. (4)

После преобразования получим новое положение поверхности второго порядка bayd31.wmf и точки bayd32.wmf, bayd33.wmf, которые соответствуют точкам, bayd34.wmf и bayd35.wmf. Проецируем точки bayd36.wmf и bayd37.wmf вертикальными лучами на плоскость П1, получим точки A3 и A4.

Через точки A1, A2 и A3, A4 проводим прямые, параллельные соответственно осям координат ОХ2, ОХ1. Получим четырехугольник с вершинами bayd38.wmf, bayd39.wmf и bayd40.wmf, bayd41.wmf.

В результате последовательного выполнения вышеизложенного конструктивного аппарата, каждая точка A плоскости П1 преобразуется в четыре точки bayd42.wmf, bayd43.wmf и bayd44.wmf, bayd45.wmf плоскости bayd46.wmf.

Учитывая двухпараметрическое множество точек совмещенной плоскости bayd47.wmf, получим биквадратичное преобразование плоскости, обозначенное буквой L. Аналогичным образом можно показать, что в обратном направлении каждая точка A/ плоскости bayd48.wmf преобразуется в четыре точки плоскости П1. Это преобразование обозначим буквой L/.

С использованием предложенной выше пространственной конструктивной схемы нами получены различные виды канонических биквадратичных преобразований L, L/ плоскости.

Разработанная пространственная конструктивная схема отображения двух поверхностей второго порядка позволила установить новые закономерности получения четыре – четырехзначных соответствий между двумя несовмещенными плоскостями. Разработанный на совмещенной плоскости метод получения биквадратичных преобразований плоскости, порождаемый бинарным отображением двух поверхностей второго порядка. Этот метод позволил получить двенадцать видов канонических биквадратичных преобразований плоскости. Кроме этого, разработанный алгоритм математической модели канонических биквадратичных преобразований плоскости, что необходимо для их практического применения.

В статье предлагается конструирование и новый способ построения поверхности туннеля в соответствии с предопределенными условиями с использованием биквадратичного преобразования плоскости, что позволяет описать конструкцию каждой секции туннеля на одно уравнение.

Для того, чтобы определить способ получения кривых с использованием биквадратичных преобразований, сечение поверхности туннеля может быть задано различными способами. В предлагаемом способе прообраз (кривая п) подвергается геометрическому преобразованию, в результате чего получается образ (искомая кривая п/). При этом прообраз задается уравнением

bayd50.wmf

где k, m – постоянные коэффициенты.

Биквадратичное преобразование L8 задается уравнениями

bayd51.wmf bayd52.wmf

где х1/, х2/ – координаты точек образа; х1, х2 – координаты точек прообраза.

Уравнение полученной кривой п/ записывается в виде

bayd53.wmf,

где k, m – постоянные коэффициенты.

Для конструирования поверхности туннеля по заданным параметрам берем несколько точек прообраза п в соответствии, затем каждую из этих точек подвергаем преобразованию. Найдем множество точек, плавно соединив которые получим кривую образ п/. При этом форма кривой п/ зависит от значений коэффициентов m, k прообраза п.

Поверхность туннеля образуется в результате перемещения плоской кривой четвертого порядка (сечения) по оси направляющей кривой.

Результаты исследования и их обсуждение

Конструирование формы каналовой поверхности туннеля осуществляется, используя графическую модель биквадратичного преобразования следующими задачами:

Исходными данными для решения этой задачи являются осевая линия каналовой поверхности туннеля и законы изменения параметров поперечных сечений a и b. Каждое поперечное сечение п/ туннеля является кривой четвёртого порядка, полученной с использованием биквадратичного преобразования. При этом параметры a и b каждого поперечного сечения определяются из формул

bayd54.wmf (5)

где l – расстояние от начала туннеля до рассматриваемого поперечного сечения.

Далее используем биквадратичное преобразование, задаваемое уравнением

bayd55.wmf (6)

где bayd56.wmf – координаты точки прообраза; bayd57.wmf – координаты точки образа.

В качестве прообраза принимаем прямую линию общего положения п, уравнение которой имеет вид

bayd58.wmf (7)

где k, m – постоянные коэффициенты.

Определяем коэффициенты k, m уравнения (7). Для этого используем свойства биквадратичного преобразования:

а) точка – прообраз В и точка – образ В2/ имеют одинаковую высоту. Точка В2/ является очерковой точкой сечения п/. Поэтому точка В прообраза п имеет координаты

bayd59.wmf (8)

bayd60.wmf (9)

б) точка – прообраз С преобразуется в точки – образы С1/ = С3/ и С2/ = С4/, которые лежат на оси Ох1. Точка С1/ имеет координаты (b + c; 0). Точке С1/ соответствует точка С, координаты которой удовлетворяют условию

bayd61.wmf (10)

Из хода построения точки С1/ можно получить следующее уравнение:

bayd62.wmf (11)

где с = a/2.

Таким образом, при выполнении условия уравнения (10), подставляя значение в уравнение (11), получим

bayd63.wmf или bayd64.wmf (12)

Через точки В и С проводим прообраз п и, учитывая это, составляем следующую систему уравнения:

bayd65.wmf (13)

В результате решения данной системы уравнения получим значение m и k:

bayd66.wmf (14)

bayd67.wmf (15)

Для получения искомого сечения туннеля, которое удовлетворяет наперед заданным условиям, подвергаем прообраз п биквадратичному преобразованию. Алгебраическое уравнение этого сечения имеет вид

bayd68.wmf (16)

где k, m – параметры прообраза, описанные уравнениями (14) и (15).

Таким образом, параметрическое уравнение сечения туннеля имеет следующий вид:

bayd69.wmf (17)

где х1 – параметры, bayd70.wmf; bayd71.wmf; bayd72.wmf.

Полученное параметрическое уравнение можно применить при конструировании любого требуемого сечения рассматриваемой поверхности туннеля.

Заключение

Конструирование поверхности туннеля представляет собой сложную криволинейную поверхность, которая должна отвечать заданным требованиям, а конструкция поверхности туннеля требует значительных затрат времени. В результате исследований получен новый способ построения поверхности туннеля в соответствии с предопределенными условиями с использованием биквадратичного преобразования плоскости, что позволяет описать конструкцию каждой секции туннеля одним уравнением.

Таким образом, предлагаемый метод конструирования с использованием биквадратичного преобразования позволяет получить различные классы каналовых поверхностей и определить уравнение семейства поперечных сечений рассматриваемой поверхности, что облегчает дальнейшие геометрические расчеты на компьютере.


Библиографическая ссылка

Байдабеков А.К., Кемельбекова Э.А. БИКВАДРАТИЧНЫЕ ПРЕОБРАЗОВАНИЯ И КОНСТРУИРОВАНИЕ ТУННЕЛЕЙ // Международный журнал прикладных и фундаментальных исследований. – 2019. – № 1. – С. 43-46;
URL: https://www.applied-research.ru/ru/article/view?id=12638 (дата обращения: 24.01.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074